Investing in BigHat Biosciences

“Premature optimization is the root of all evil.” 

– Donald Knuth, The Art of Computer Programming (1968)

Imagine a 3D surface with peaks and valleys of complex shapes. Then expand that surface into many more than three dimensions, to account for the dozens of required properties of a successful medicine — target affinity, biological function, safety, manufacturability, and more. This is what drug discovery is like. If each point on this vast surface is a drug, how do you find the best one? How do you avoid prematurely optimizing along just a single parameter, and missing the most useful candidates entirely?

Now bring this framework to biologic drugs—one of the fastest-growing and most impactful categories of new therapeutic products. They include widely used monoclonal antibodies, fusion proteins, growth factors, hormones, and more. Biologics are, in principle, among our most programmable medicines: unlike small molecule drugs, every protein therapeutic has an underlying genetic sequence. But biologic drugs also pose unique challenges (e.g., stability, immunogenicity), adding many more dimensions to manage. So which (of many) protein sequences will solve the therapeutic problem at hand? How do you optimize enough, but not too much, and not too early?

The traditional approach to solving this problem relies on experimental screens with large sequence libraries. These have been the workhorses of antibody discovery for a long time, with growing library sizes, and incrementally improving in-vitro display technologies. But even a very large library (e.g. 10^13 sequences) only captures the diversity of ~10 amino acids (20^10 sequences). The relevant search space for most protein therapeutics spans a much longer range (e.g., 50-250 amino acids), which would require library sizes that are many orders of magnitude larger. As a result, experimental screens represent only a tiny fraction of all possible sequences.

This is where machine learning can be so powerful. BigHat Biosciences is building a combined experimental and computational platform for the future of biologic drug design, moving from a screening-driven mindset towards iterative engineering. Machine learning models can integrate data from many experiments over time, and optimize over the multi-parameter search space of protein sequences far more completely than any individual screen ever can. The effects of infusing engineering into every step of the process are exciting. This means BigHat can design smarter, more informative experiments—telling us where we need to go, instead of asking us to explore the space blindly. They are also building an automated, high-throughput wet lab, leveraging tools from the world of synthetic biology. And everything in this lab, from common lab tasks such as cloning to quality control, is optimized with computational insights.

I’ve known Mark DePristo, co-founder and CEO of BigHat, for over 10 years; we first met at the Broad Institute, where Mark was leading one of the largest and most impactful professional bioinformatics software teams across all of academia; he also subsequently ran Google Brain’s Genomics team. BigHat’s co-founder Peyton Greenside is an equally prolific computational biologist, who combines an infectious intellectual curiosity with the pragmatism needed to grow a company.

The BigHat team represents the next wave of biotech entrepreneurs who are building at the intersection of engineering and biology, ushering in a new wave of productivity in biologic drug development, with tremendous potential for patient impact. We are honored to lead their Series A financing, and I’m thrilled to be joining the BigHat board of directors.

The views expressed here are those of the individual AH Capital Management, L.L.C. (“a16z”) personnel quoted and are not the views of a16z or its affiliates. Certain information contained in here has been obtained from third-party sources, including from portfolio companies of funds managed by a16z. While taken from sources believed to be reliable, a16z has not independently verified such information and makes no representations about the enduring accuracy of the information or its appropriateness for a given situation. In addition, this content may include third-party advertisements; a16z has not reviewed such advertisements and does not endorse any advertising content contained therein.

This content is provided for informational purposes only, and should not be relied upon as legal, business, investment, or tax advice. You should consult your own advisers as to those matters. References to any securities or digital assets are for illustrative purposes only, and do not constitute an investment recommendation or offer to provide investment advisory services. Furthermore, this content is not directed at nor intended for use by any investors or prospective investors, and may not under any circumstances be relied upon when making a decision to invest in any fund managed by a16z. (An offering to invest in an a16z fund will be made only by the private placement memorandum, subscription agreement, and other relevant documentation of any such fund and should be read in their entirety.) Any investments or portfolio companies mentioned, referred to, or described are not representative of all investments in vehicles managed by a16z, and there can be no assurance that the investments will be profitable or that other investments made in the future will have similar characteristics or results. A list of investments made by funds managed by Andreessen Horowitz (excluding investments for which the issuer has not provided permission for a16z to disclose publicly as well as unannounced investments in publicly traded digital assets) is available at https://a16z.com/investments/.

Charts and graphs provided within are for informational purposes solely and should not be relied upon when making any investment decision. Past performance is not indicative of future results. The content speaks only as of the date indicated. Any projections, estimates, forecasts, targets, prospects, and/or opinions expressed in these materials are subject to change without notice and may differ or be contrary to opinions expressed by others. Please see https://a16z.com/disclosures for additional important information.

Biology is eating the world

Sign up for our bio newsletter to get the a16z take on the future of biology and engineering.