Freenome

adaptivegeneticsengine_freenome
image: Freenome

We frequently hear scientists are actively looking for a cure for cancer. But where are they looking? The cure to cancer isn’t going to be simply found in another drug. Indeed, there are already many drugs for cancer, with multiple drugs often available for a given type of cancer. Moreover, the five-year survival rates for many types of cancer patients — including breast, ovarian, colorectal — significantly improves (up to 80% and in some cases 100%) with curative surgery or existing drugs administered before the tumor has had a chance to spread.

But there’s a catch: In order to increase those survival rates, cancer has to be caught early. And therein lies the problem.

Catching cancer early has been an unrealized dream for many years. This is a classic easier-said-than-done scenario with many technical hurdles: In particular, identifying the type of cancer, detecting it early enough to stop it, and at a cost low enough that allows everyone to test frequently and with high accuracy. That’s a pretty tall order.

Software will play a major role in delivering what’s missing

First off, a key challenge lies in how we perform cancer biopsies. Traditionally, one must extract tumor tissue (i.e., extracting part of the lung for lung cancer patients). This is not only expensive, it’s rife with potential adverse effects (e.g., about 1 in 7 people suffer a partial lung collapse from biopsy). Moreover, this is a classic chicken-and-egg problem: You can’t perform a biopsy unless there’s reason to suspect the patient has cancer. All too often, this comes too late. Liquid biopsies represent a solution to this catch-22; they work by realizing that tumors give off extra-cellular DNA that can be found in blood. Thus, instead of removing tissue, a liquid biopsy test involves just the (essentially) non-invasive procedure of drawing blood.

However, this leads us to a second challenge — how do we detect cancer from DNA? Genomic sequencing is a natural approach, but traditionally has been cost prohibitive. Indeed, the first human genome sequenced in 1997 cost billions of dollars. Just a decade ago the cost was millions of dollars. The cost of sequencing is exponentially decreasing, often faster than Moore’s law (its compute sibling), with the cost now in the hundreds of dollars; and with novel machine learning tricks, soon to be under a hundred dollars. The cost part of the equation is not to be underestimated: For this approach to be a cure to cancer, we need a test that can be taken relatively frequently. At a few $100s/year, one could imagine insurance companies paying for this for even low- to medium-risk patients. At a few $10s/year, it would be a no-brainer out-of-pocket expense.

We are on the heels of a major milestone: We’re finally at the point where the cost has reduced so much that genomics can go from cutting-edge scientists in special facilities into the hands of doctors everywhere.

Beyond cost however, another key challenge in medical testing is accuracy. That’s the final hurdle here. When accuracy isn’t sufficiently high, there can be many false positives, which not only leads to a major financial drain on the system but a great emotional toll on patients. The AMA recently changed its guidelines around mammograms for this very reason.

And that’s where Freenome enters the picture. The Freenome team — co-founders Gabriel Otte, Charlie Roberts, and Riley Ennis — has deep expertise in both the biology and the computer science involved, allowing them to develop software technology that can leverage liquid biopsies and genomics to develop a test that can detect cancer early.

We are in an unprecedented age in terms of the power of machine learning and data science. So it’s natural that novel techniques such as deep learning could take data sets and make high accuracy predictions even on challenging test cases. If we could harness this technology and apply it to the space of cancer genomics, we could finally solve this problem. This would allow genetic testing of tumors to go way beyond existing biomarkers and make predictions that couldn’t be possible today. Bringing together large patient data sets creates massive data network effects, a flywheel effect where gaining more customers leads to better predictions for those customers which in turn leads to better products which in turn leads to more customers and so on.

The early results are very promising. In our own diligence, Freenome was able to predict five samples perfectly — including negative controls and a very early-stage sample. For these reasons, we’re excited to announce that we’re making an investment in Freenome, helping them push this plan forward.

What will the cure to cancer look like? Clearly drugs and biological assays will play an important role, but not on their own: It will likely be advances in software (and in particular machine learning) that will be the critical last missing piece of the cure.

Moreover, I expect that this is only the beginning. We ask too much from medicine — that medicine heal us when disease has already progressed way too far (late-stage cancer, heart disease, type II diabetes). While prevention has always been seen as the best cure, it’s never been viable in key disease areas. I expect that through analyzing new data sources (genomics, information from wearables, etc.), machine learning will usher in a new era of prevention, an era where software will play a key role in healing the world.

 

 

 

The views expressed here are those of the individual AH Capital Management, L.L.C. (“a16z”) personnel quoted and are not the views of a16z or its affiliates. Certain information contained in here has been obtained from third-party sources, including from portfolio companies of funds managed by a16z. While taken from sources believed to be reliable, a16z has not independently verified such information and makes no representations about the enduring accuracy of the information or its appropriateness for a given situation.

This content is provided for informational purposes only, and should not be relied upon as legal, business, investment, or tax advice. You should consult your own advisers as to those matters. References to any securities or digital assets are for illustrative purposes only, and do not constitute an investment recommendation or offer to provide investment advisory services. Furthermore, this content is not directed at nor intended for use by any investors or prospective investors, and may not under any circumstances be relied upon when making a decision to invest in any fund managed by a16z. (An offering to invest in an a16z fund will be made only by the private placement memorandum, subscription agreement, and other relevant documentation of any such fund and should be read in their entirety.) Any investments or portfolio companies mentioned, referred to, or described are not representative of all investments in vehicles managed by a16z, and there can be no assurance that the investments will be profitable or that other investments made in the future will have similar characteristics or results. A list of investments made by funds managed by Andreessen Horowitz (excluding investments and certain publicly traded cryptocurrencies/ digital assets for which the issuer has not provided permission for a16z to disclose publicly) is available at https://a16z.com/investments/.

Charts and graphs provided within are for informational purposes solely and should not be relied upon when making any investment decision. Past performance is not indicative of future results. The content speaks only as of the date indicated. Any projections, estimates, forecasts, targets, prospects, and/or opinions expressed in these materials are subject to change without notice and may differ or be contrary to opinions expressed by others. Please see https://a16z.com/disclosures for additional important information.